The apparent permeabilities of Caco-2 cells to marketed drugs: magnitude, and independence from both biophysical properties and endogenite similarities
نویسندگان
چکیده
We bring together fifteen, nonredundant, tabulated collections (amounting to 696 separate measurements) of the apparent permeability (P app) of Caco-2 cells to marketed drugs. While in some cases there are some significant interlaboratory disparities, most are quite minor. Most drugs are not especially permeable through Caco-2 cells, with the median P app value being some 16 ⋅ 10(-6) cm s(-1). This value is considerably lower than those (1,310 and 230 ⋅ 10(-6) cm s(-1)) recently used in some simulations that purported to show that P app values were too great to be transporter-mediated only. While these values are outliers, all values, and especially the comparatively low values normally observed, are entirely consistent with transporter-only mediated uptake, with no need to invoke phospholipid bilayer diffusion. The apparent permeability of Caco-2 cells to marketed drugs is poorly correlated with either simple biophysical properties, the extent of molecular similarity to endogenous metabolites (endogenites), or any specific substructural properties. In particular, the octanol:water partition coefficient, logP, shows negligible correlation with Caco-2 permeability. The data are best explained on the basis that most drugs enter (and exit) Caco-2 cells via a multiplicity of transporters of comparatively weak specificity.
منابع مشابه
Understanding the foundations of the structural similarities between marketed drugs and endogenous human metabolites
BACKGROUND A recent comparison showed the extensive similarities between the structural properties of metabolites in the reconstructed human metabolic network ("endogenites") and those of successful, marketed drugs ("drugs"). RESULTS Clustering indicated the related but differential population of chemical space by endogenites and drugs. Differences between the drug-endogenite similarities res...
متن کاملAnalysis of drug–endogenous human metabolite similarities in terms of their maximum common substructures
In previous work, we have assessed the structural similarities between marketed drugs ('drugs') and endogenous natural human metabolites ('metabolites' or 'endogenites'), using 'fingerprint' methods in common use, and the Tanimoto and Tversky similarity metrics, finding that the fingerprint encoding used had a dramatic effect on the apparent similarities observed. By contrast, the maximal commo...
متن کاملConsensus rank orderings of molecular fingerprints illustrate the ‘ most genuine ’ similarities between marketed drugs and small endogenous human metabolites , but highlight exogenous natural products as the most important ‘ natural ’ drug transporter substrates
We compare several molecular fingerprint encodings for marketed, small molecule drugs, and assess how their rank order varies with the fingerprint in terms of the Tanimoto similarity to the most similar endogenous human metabolite as taken from Recon2. For the great majority of drugs, the rank order varies very greatly depending on the encoding used, and also somewhat when the Tanimoto similari...
متن کاملMetMaxStruct: A Tversky-Similarity-Based Strategy for Analysing the (Sub)Structural Similarities of Drugs and Endogenous Metabolites
BACKGROUND Previous studies compared the molecular similarity of marketed drugs and endogenous human metabolites (endogenites), using a series of fingerprint-type encodings, variously ranked and clustered using the Tanimoto (Jaccard) similarity coefficient (TS). Because this gives equal weight to all parts of the encoding (thence to different substructures in the molecule) it may not be optimal...
متن کاملPhytochemicals, antioxidant and antiproliferative properties of Rosmarinus officinalis L on U937 and CaCo-2 cells
Rosmarinus officinalis L., a medicinal herb from the labiates family, has been reported to be of potential benefit in the treatment and prevention of several diseases. In particular its phenolics have demonstrated protective effects on various types of cancer through several mechanisms. The present study aimed to determine the effects of rosemary phenolic extracts on human cell functions, with ...
متن کامل